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Preface 

THIS MONOGRAPH presents a series of tables con- 
taining computed data for use in the design of 
components of structures which can be idealized 
as rectangular plates or slabs. Typical examples 
are wall and footing panels of counterfort retaining 
walls. The tables provide the designer with a 
rapid and economical means of analyzing the 
structures at representative points. The data 
presented, as indicated in the accompanying 
figure on the frontispiece, were computed for fivl: 
sets of boundary conditions, nine ratios of lateral 
dimensions, and eleven loadings typical of those 
encountered in design. 

As supplementary guides to the use and devel- 
opment of the data compiled in this monograph, 
two appendixes are included. The first appendix 
presents an example of application of the data to 
a typical structure. The second appendix explains 
the basic mathematical considerations and develops 
the application of the finite difference method to 
the solution of plate problems. A series of 
drawings in the appendixes presents basic relations 
which will aid in application of the method to 
other problems. Other drawings illustrate appli- 
cation of the method to one of the specific cases 
and lateral dimension ratios included in the 
monograph. 
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Introduction 

CERTAIN COMPONENTS of many structures may be 
logically idealized as laterally loaded, rectangular 
plates or slabs having various conditions of edge 
support. This monograph presents tables of 
coefficients which can be used to determine 
moments and reactions in such structures for 
various loading conditions ,and for several ratios 
of lateral dimensions. 

The finite difference method was used in the 
analysis of the structures and in the development 
of the tables. This method, described in Appendix 

II of this monograph, makes possible the analysis 
of rectangular plates for any of the usual types 
of edge conditions, and in addition it can readily 
take into account virtually all types of loading. 
An inherent disadvantage of the method lies in 
the great amount of work required in solution of 
the large number of simultaneous equations to 
which it gives rise. However, such equations can 
be readily systematized and solved by an electronic 
calculator, thus largely offsetting this disadvan- 
tage. 





Method of Analysis 

THE FINITE difference method is based on t,he 
usual approximate theory for the bending of thin 
plates subjected to lateral loads.‘* The custom- 
ary assumptions are made, therefore, with regard 
to homogeneity, isotropy, conformance with 
Hooke’s law, and relative magnitudes of de- 
flections, thickness, and lateral dimensions. (See 
Appendix II.) 

Solution by finite differences provides a means 
of determining a set of deflections for discrete 
points of a plate subjected to given loading and 
edge conditions. The deflections are determined 
in such a manner that the deflection of any point, 
together with those of certain nearby points, 
satisfy finite difference relations which correspond 
to the differential expressions of the usual plate 
theory. These expressions relate coordinates and 
deflections to load and edge conditions. 

*Numbers in superscript refer to publications in List of References on 
page 89. 

In this study, for each load and ratio of lateral 
dimensions, deflections were determined at 30 or 
more grid points by solution of an equal number of 
simultaneous equations. A relatively closer spac- 
ing of points was used in some instances near 
fixed boundaries t’o attain the desired accuracy in 
this region of high curvature. For the a/b ratios 
l/4 and l/8, one and two additional sets, respec- 
tively, of five deflections were determmed in the 
vicinity of the x axis. Owing to the limitations on 
computer capacity, these deflections were com- 
puted by solutions of supplementary sets of 20 
equations whose right-hand members were func- 
tions of certain of the initially computed deflections 
as well as of the loads. In each case, the solution 
of the equations was made through the use of an 
electronic calculator. 

Computations of moments and reactions were 
made using desk calculators and the appropriate 
finite difference relations. The finite difference 
relations used are discussed in Appendix II. 





FIGURES 1 through 36 present the results of these 
studies as tables of dimensionless coefficients for 
the rectangular components of bending moment 
and for reactions at the supports. The studies 
were carried out for the following edge, or boun- 
dary, conditions : 

Case 1: Plate fixed along three edges and 
free along the fourth edge. 

Case 2: Plate fixed along three edges and 
hinged along the fourth edge. 

Case 3: Plate fixed along one edge, free 
along the opposite edge, and hinged along 
the other two edges. 

Case 4: Plate fixed along two adjacent 
edges and free along the other two edges. 

Case 5: Plate fixed along four edges. 
The loads, selected because they are represent- 

ative of conditions frequently’ ‘encountered in 
structures, are : 

Load I: Uniform load over the full height 
of the plate. 

Load II: Uniform load over 2/3 the height 
of the plate. 

Load III: Uniform load over l/3 the height 
of the plate. 

Load IV: Uniformly varying load over the 
full height of the plate. 

Load V: Uniformly varying load over 213 
the height of the plate. 

Load VI: Uniformly varying load over l/3 
the height of the plate. 

Load VII : Uniformly varying load over l/6 
the height of the plate. 

Load VIII: Uniform moment along the 
edge y=b of the plate for Cases 1, 2, and 3. 

Load IX: Uniform line load along the free 
edge of the plate for Cases 1 and 3. 

Load X: Uniformly varying load, p=O 
along y=b/2. 

Load XI : Uniformly varying load, p = 0 
along x=a/2. 

Plates with the following ratios of lateral 
dimensions, a, to height b, were studied for 
the first four cases: l/8, l/4, 318, l/2, 314, 1, 312. 
The analysis was carried out for these cases 
using Loads I through IX and all dimension 
ratios, except that Load IX was omitted from 
Case 2 for obvious reasons, and Loads VIII and 
IX and the ratio a/b=312 were omitted from 
Case 4. It will be noted that for the first three 
cases, which have symmetry about a vertical axis, 
the dimension a denotes one-half of the plate 
width, and for the fourth, unsymmetrical case, a 
denotes the full width. For Case 5, lateral 
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6 MOMENTS AND REACTIONS FOR RECTANGULAR PLATES 

dimension ratios of 318, l/2, 518, 3/4, 718 and 1 can be determined easily, since the deflections 
were studied, subjected to Loads I, X, and XI. computed from finite difference theory are in- 
For this case, a and b denote the full lateral dependent of Poisson’s ratio. Futhermore, the 
dimensions. All numerical results are based on bending moments at, and normal to, the fixed 
a value of Poisson’s ratio of 0.2. edges are unaffected by this factor. It is reason- 

The arrangement of the tables is such t,hat able then to conclude that insofar as the moments 
each coefficient, both for reaction and moment, which are most important in design are concerned, 
appears in the tables at a point which corresponds the maximum effect for this case will occur at 
geometrically to its location in the plate as shown the center of the slab. 
in each accompanying sketch. Table 1 shows a comparison of maximum bend- 

ing moment coeflicients at the center of a uniformly 

Effect of Poisson’s Ratio 
loaded plate for several values of p and for each 
ratio of a/b for which Case 5 was computed. 

A question which frequently arises is: What For a change in Poisson’s ratio from 0.2 to 0.3 

effect does Poisson’s ratio have on the bending it is noted that the maximum effect on the bending 
moments in a plate? For the plate fixed along moment coefficient occurs at a/b= 1, where the 
four sides, a clear understanding of this effect change in the coefficient is less than 8 percent. 

TABLE l.-Effect of Poisson’s Ratio (p) on Coeficienk of Maximum Bending Moment at the Center of a Uniformly 
Loaded Rectangular Plate Fixed Along Four Edges 

Values of M./pa* -% “;I 0 

0. 375 
0. 5 
0.625 
0. 75 
0. 875 
1. 0 

- 0.0423 
- 0.0403 
-0.0358 
-0.0298 
-0. 0235 
-0.0177 

0.1 

-0.0424 -0. 0424 -0.0425 
- 0.0407 -0.0411 -0.0415 
-0.0367 -0.0376 -0. 0384 
-0.0311 -0. 0324 -0.0337 
-0.0251 -0.0267 -0. 0283 
-0. 0195 -0.0213 -0. 0230 

0.2 0.3 

__ .-- .-...-.-._-_ -.. 



RESULTS 

Moment-: (Coefflctent) (pb’) 

Reaction : (Coefftclent) (pb) 

POSITIVE SIGN CONVENTION 

FIGURE l.-Plate .tixed along three edges, moment and reaction coeficients, Load I, uniform load. 
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FIGURE 2.-P&e $xed along three edges, moment and reaction coeflcients, Load ZZ, 913 uniform load. 



RESULTS 

Y 

FIGURE 3.-Plate $xed along three 

Moment = (Coefficieni) (pb’) 

Reaction = (Coefficient) (pb) 
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POSITIVE SIQN CONVENTION 

edges, moment and reaction coeflcients, Load III, l/S uniform load. 
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FIGURE k--Plate fixed along three edges, moment and reaction coeficients, Load IV, uniformly varying loud. 

_.-.-.- -.--.- .______- 



RESULTS 

I I I 0 I- 0155 I+ 0025 I 

t 
. . 

m\bI+ 001, , I+ 1712 I+ 2595 

I # ---- I --- I t .3224 +. 3329 t.3356 I 
Y ” 

Moment : (Coefficlent)( pb2.) 

Reaction = (Coefflcient)( pb) 

1 
MI IJP -+- 

’ Rx 

w 

b 
0 X 

” M, 

W 

POSITIVE SIGN CONVENTION 

FIGURE B.-Plate Jixed along three edges, moment and reaction coeficients, Load V, .9/S uniformly varying load. 



Moment = (Coefficient)ipb’) 

Reaction = (Goefficient)( pb ) 

W. I 

POSITIVE SIGN CONVENTION 

FIQURE B.-Plate fixed along three edges, moment and reaction coeficients, Load VI, l/S uniformly varying load. 

-.-..--.__-. .._ 



RESULTS 

*-- 0 _-_ i _, ---O---~ --- Gee , t 

ill.ii -i-, 
0 

Moment f (Coefficient)(pb*) 

Aeoction = (Coefficient)( pb) 
+X 

W I 

POSITIVE SISN CONVENTION 

FIGURE 7.-Plate jixed along three edges, moment and reaction coejkients, Load VII, l/6 uniformly varying load. 



FIGURE 8.-Plate jked along three edges, moment and reaction coejkients, Load VIII, moment at free edge. 
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POSITIVE SIGN CONVENTION 

moment and reaction coeflcients, Load IX, line load at free edge. 
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.__- ~-++ ---+I F., I _--- 
hinged T 

IIriIll 
a 

i ---- - -X 

Moment = (Coefficient)(pb*) 

Reoctiin = (Coefficicnt)( pb) 

POSITIVE SION CONVENTION 

Fxa UaE lO.-Plate jixed along three edges-Hinged along one edge, moment and reaction coeficiente, Load I, uniform load. 
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4 , 
0.8 I .o 0 1 0.2 [ 0.4 1 0.6 [ 0.6 [ 1.0 

+.0017 +.0020 
0 0 0 IO lo IO I” In 

Moment = (Coefficient)(pb’) 

Reaction = (Coefficient)( pb ) 

LE Il.-Plate jized along three edges-Hinged along one edge, moment and reaction coejicients, Load ZZ, d/S unifol vn load. 
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X 
POSITIVE SIQN CONVENTION 

FIQURE l2.-Plate fixed along three edges-Hinged along one edge, moment and reaction coefficients, Load III, l/S unifor .rn load. 

Moment = (Coefficient)(pb’) 

Aeoction = (Coefficient)( pb) 



RESULTS 

0 

Moment = (Coefficirnt)(pb*) 

Reaction = (Coefficicnt)( pb ) 
X 

POSITIVE SIGN CONVENTION 

FIGURE 13.-Plate fixed along three edges-Hinged along one edge, moment and reaction coeficients, Load IV, uniformly varying 
load. 

-.--_._- _-.._-.-- --..--. 
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Moment = (Coefficient)(pff) 

Reaction = (Coefficient)( pb ) 
+-X 

POSITIVE SIQN CONVENTION 

FIGURE 14.-Plate fxed along three edges-Hinged along one edge, moment and reaction coefkients, Load V, d/3 uniformly 
varying load. 

.._.. .- ..-.---..- -.-- 
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Moment = (Coefficient)(pb*) 

Reaction = (Coefficient)( pb) 

POSITIVE SIGN CONVENTION 

FIGURE 15.-Plate fixed along three edges-Hinged along one edge, moment and reaction coejkients, Load VI, l/3 uniformly 
varying load. 
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Moment = (Goefficient)(pb? 

Reaction = (Coefficient)( pb) 

POSITIVE SIGN CONVENTION 

FIGURE 16.-Plate jixed along three edges--Hinged along one edge, moment and reaction coejicients, Load VII, l/6 uniformly 
varying load. 
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0 

Moment = (Coefficient)( M ) 

Reaction = (Coefficient)($), 

POSITIVE SIGN CONVENTION 

FIGURE 17.-Plate $xed along three edges-Hinged along one edge, moment and reaction coeficiente, Load VIII, moment 
hinged edge. 
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FIQURE 18.-Plate fixed along one edge-Hinged along two 

Moment = (Coefficlent) (pb’) 

Reaction = (Coefficient) (pb ) 

POSITIVE SIGN CONVENTION 

opposite 
load. 

edges, and reaction coefkients, Load I, uniform 
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FIG 

gt-.00371-.00531-.00631-.0067i 

r1-.02’351 0 ~-.0140~-.0220~-.026lt-.0277kO262i 

Moment = (Coefficient) (pb’) 

Reoctlon = (GoeffIcIent) (pb) f&l 
M. I/ -+- 

’ R. ̂ . 

POSITIVE SIGN CONVENTION 

E lg.-Plate fixed along one edge-Hinged along two opposite edges, moment and reaction coeficients, Load II, 
uniform load. 
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Moment : (Coefficient) (pb*) 

Reaction = (Coefficient) (pb ) 
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POSITIVE SION CONVENTION 

FIQURE 20.-Plate jkced along one edge-Hinged along two opposite edges, moment and reaction coejkients, Load III, 
uniform load. 

l/S 



RESULTS 

0 

Moment = (Coefflclent) (pb’) 

Reoctaon = (Coeffxlent) (pb) 

Ma IA -+- 

d&iJ- 
’ R. Rv X 

I 
MY 

W. 

POSITIVE SIGN CONVENTION 

FIGURE 21.-Plate jixed along one edge-Hinged along two opposite edges, moment and reaction coeflcients, Load IV, unifol 
varying load. 

- .-._- __-- 
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--_ 
f 

Moment = (caefflclent)(pb’) 

f?eactlon = (Coefflcient)( pb) 
+X 

W 
I 

POSITIVE SIGN CONVENTION 

FIGURE 22.-Plate fixed along one edge-Hinged along two opposite edges, moment and reaction coeficients, Load V, 
uniformly varying load. 
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FI :GuRE 23.-Plate fixed along 

Moment = (Coefficlent)(pb*) 

Reaction = (Coefficient)( pb) 

along two opposite edges, 
uniformly varying load. 

moment and reaction coejicients, Load VI, 11s 

POSITIVE SIQN CONVENTION 
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Moment = (Coofficiant)( pb’) 

heOCtiOn = (Coefflcient)( pb) 

i 

W 

POSITIVE SION CONVENTION 

FIGURE 24.-Plate fized along one edge-Hinged along two opposite edges, moment and reaction coeficients, Load VII, l/6 

uniformly varying load. 
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FIG 

Moment - (Coefflcient)( M) 

Reaction = (Coeffxwnt)(j-1 

POSITIVE SIGN CONVENTION 

URE 25.-Plate jixeu along one edge-Hinged along two opposite edges, mom&t and reaction coeficients, Load VIII, momen 
at free edge. 
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FIGURE 26.-Plate fixed along one 

Moment = (Coefftcient)( Fb) 

Reoctlon : (Coefficient)( F ) 

along two opposite edges, 
load at free edge. 

and reaction coqjicients, Load IX, 1 ine 

POSITIVE SIQN CONVENTION 
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FIGURE 27.-Plate fixed along two adjacent edges, moment and reaction coeficients, Load I, uniform load. 
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FIQURE 28.-Plate jbed along two adjacent edges, moment and reaction coeficients, Load II, $713 uniform load. 
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FIGURE 29.-Plate fixed along two adjacent edges, moment and reaction coeficients, Load III, l/S uniform load. 
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FIG IURE 30.-Plate $xed along two adjacent edges, moment and reaction coeficients, Load IV, uniformly varying load. 
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edges, moment and reaction coefkients, Load V, S/S unijormly varying load. FIQ URE 31.-Plate fixed along two adjacent 
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ho ,URE 32.-Pkztejixed along 
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FIGURE 33.-Plate fixed along two adjacent edges, moment and reaction coeficients, Load VII, l/6 unijownly varying load. 
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ieo-rl POSITIVE SIQN CONVENTION 

FIGURE 34.-Plate $zed along four edgeqmcnnent and reaction coeflcients, Load I, uniform load. 

Moment = (Coefficient)(po*) 

Reaction = (Coefficient)(po) 



FIG m 35.-Plate fixed along four edges, moment 

Moment = (Coefficient)(po*) 

Reoctmn = (Coefficaent)( po) 

and reaction coeficients, 
y= b/2. 

Load 
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POSITIVE SISN CONVENTION 

uniformly varying load, p=O al0 lng 
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Moment = (Coefflcient)( pa*) 

Reaction = (Coefficient)(po) 

POSITIVE SIGN CONVENTION 

FIGURE 36.-Plate fixed along four edges, moment and reaction coeficients, Load XI, uniformly varying load, p=O alox 
x= al.% 



Accuracy of 
Method of Analysis 

THE FINITE difference method is inherently 
approximate. A factor directly affecting its 
accuracy is the closeness of spacing, hence the 
number, of grid points. In obtaining the solutions 
presented in this monograph, a maximum number 
of points was used, consistent with the objectives 
of the study and the capacity of the available 
electronic calculator. 

A few instances may be found where there 
appear to be irregularities in the orderly progres- 
sion of the coefficients as the ratio a/b changes. 
Such instances are most likely to occur in the 
low values of the ratio where, to gain accuracy, 
the number of points used in the analysis was 
increased as a/b decreased. Although these incon- 
sistencies are undesirable from an academic 
standpoint, they are not of sufficient magnitude 
to affect materially the usefulness of the results. 

As a general check on the finite difference 
method, problems for which “exact” solutions are 
known have been computed. The results indicate 
that for spacings comparable to those used in this 
study, errors in the maximum moments may be 
of the order of five percent. Such accuracy is 

considered to be satisfactory for design purposes. 
Percentage errors for small numerical values of 
the coefficients may, of course, be somewhat 
higher. 

For Case 5 a comparison is given in Table 2 

TABLE 2.-Comparison of Coeficients of Maximzcm Bending 
Moment at the Center of a Uniformly Loaded Rectangular 
Plate Fixed Along Four Edges 

Valuar of M./pa* from 

b/a 
Timoshenko 1 Method of this 

Monograph 2 
- 

1. 1 - 0.0264 - 0.0269 
1.2 - 0.0299 - 0.0301 
1.3 - 0.0327 - 0.0329 
1.4 - 0.0349 - 0.0352 
1.6 - 0.0381 - 0.0384 
1.7 - 0.0392 - 0.0395 
1. 8 - 0.0401 - 0.0404 
1. 9 - 0.0407 -0.0410 

1 These values taken directly from page 223, Reference 1, with due regard 
for difference in sign conventions. 

2 These values interpolated from the column for p=O.3 of the preceding 
table. 
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between values found on page 228 of Reference 1 
and directly equivalent values obtained by the 
method of this monograph. In this particular 
case, the relative differences are, for the most part, 
less than one percent. 

Comparisons have also been made with other 
existing results 2 for full uniformly varying load 
and certain ratios of a/b. These indicated very 

good agreement. 
All coefficients have been computed to four 

decimal places for consistency and to indicate 
significant figures for many conditions which 
would have no significance to three decimal 
places. This should not be taken as an indication 
that the percentage accuracy is greater than 
no ted above. 



Appendix I 

An Application to a Design Problem 

THIS appendix illustrates use of the tabulated 
coefficients by an application to a typical design 
problem. Figure 37 shows essential dimensions 
and typical loads acting on an interior panel of a 
counterfort retaining wall. Both wall and heel 
slabs approximate the condition of a plate fixed 
along three edges and free along the fourth. The 
variations in thickness of the wall slab and the 
relatively great thickness of the heel slab com- 
pared with its lesser lateral dimension are both, 
perhaps to some degree, in violation of basic 
assumptions. Ignoring these, however, is done 
with the conviction that results obtained in this 
manner are more nearly correct than what might 
be determined by other available methods. 

Center line dimensions have been used for both 
slabs. The net loads, as determined from equi- 

librium conditions, have been broken into com- 
ponents similar to certain of the typical Loads I 
through XI. These are illustrated together with 
a table of their numerical values in Figure 37. 

It will be noted that for the wall slab, r=a/b= 
0.2. This requires interpolation on r for the 
various loads and in the case of pB, interpolation 
both on r and the load. For the heel slab, 
r=a/b=1/2, and since both component loads act 
over the full area, no interpolation is required. 

For illustrative purposes, moments have been 
computed along the assumed lines of support for 
both the wall and heel slabs. Where interpola- 
tion was required to obtain the moment coeffi- 
cients, second degree interpolation was used. The 
moment coe5cients and actual computed moments 
are given in Tables 3 through 6. 
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FRONT ELEVATION 

DESIGN DATA 

Unit Weights 
Concrete 150 Ib/ft3 
Moist earth 
Saturated earth 

120 Ib/ft3 
135 lb/+ 

Water 62.4 Ib/ft3 
Surcharge Pressures 

Vertical 360 Ib/fte 
Horizontal 

Equivalent Fluid Weights 
120 Ib/ft’ 

Moist earth 40 Ib/ft3 
Saturated earth 75 Ib/ft’ 

Water surface 
elevatiorv’t 

--- -- 
! - 

, 
END ELEVATION 

COUNTERFORT RETAINING WALL 
DIMENSIONS AND TYPICAL DESIGN LOADS 

L pw -H pq-A i.6 

WATER LOAD SURCHARGE LOAD EARTH LOAD 

COUNTERFORT WALL SLAB - INTERIOR PANEL 
IDEALIZED DIMENSIONS AND COMPONENT LOADS 

Ffq+/iii??j 
NET LOAD ON w----pu ----H ~---p”----~ 

HEEL SLAG COMPONENT LOADS 

COUNTERFORT HEEL SLAB - INTERIOR PANEL 
IDEALIZE0 DIMENSIONS AND COMPONENT LOADS 

FIGURE 37.-Counterfort wall, design example. 

I 

1L 
i-- ps-4 

PORE PRESSURE LOAD 

.- .--- ---- -_-.. 
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TABLE 3.-M. for Heel Slab at Supports 

47 

T - 
Moment coefficients I- Values of pb2+ Moments (foot-kips) - 

-- 

- 

Total moment 
(foot-kips) 

1118.5 
-- 

x 
a 

-Y 
b PU 

0 1.0 + 0.0852 
0 0. 8 + 0.0807 
0 0.6 $0.0712 
0 0.4 + 0.0545 
0 0. 2 + 0.0250 
0 0 0 
0. 2 0 $0.0019 
0.4 0 + 0.0050 
0.6 0 + 0.0080 
0.8 0 +o. 0100 
1.0 0 $0.0107 

-1032.3 

PP 

q-o.0151 
$0.0216 
+ 0.0273 
+ 0.0277 
$0.0160 

0 
+o. 0014 
+ 0.0033 
+ 0.0050 
$0.0061 
+ 0.0065 

- 

-_ 

- 

M" M” 
-- 

+ 95.30 - 15.59 
$90.26 -22.30 
+79.64 -28.18 
+ 60.96 - 28.59 
$27.96 - 16.52 

0 0 
$2.13 -1.45 
+5.59 -3.41 
+8.95 -5.16 

$11.18 -6.30 
$11.97 -6.71 

- 

-- 

+79.7 
+68.0 
+51.5 
$32.4 
$11.4 

0 
$0.7 
+2. 2 
+3.8 
$4.9 
f5.3 

TABLE 4.-M, for Heel Slab at Supports - 
I 

- 
Moment coefficients 

Velues of pbb Moments (foot-kips) - 

-- 

-- 

- 

-- 

-- 

- 

Total moment 
(foot-kips) 

-1032.3 

PV 

0 
$0. 0043 
$0. 0055 
+ 0.0055 
+O. 0032 

0 
+o. 0068 
$0. 0167 
+ 0.0252 
$0. 0307 
+ 0.0325 

1118.5 

x 
-ii 

s 
b 

Pu 

0 1. 0 0 
0 0. 8 + 0.0161 
0 0. 6 +O. 0142 
0 0. 4 +o. 0109 
0 0. 2 +o. 0050 
0 0 0 
0. 2 0 + 0.0094 
0. 4 0 +O. 0252 
0, 6 0 + 0.0399 
0. 8 0 $0. 0499 
1. 0 0 + 0.0534 

M. 

0 
+ 18. 01 
+ 15. 88 
$12. 19 

f5.59 
0 

+ 10. 51 
f28. 19 
+ 44.63 
t-55. 81 
f59. 73 

M, 

0 0 
-4.44 $13. 6 
-5.68 +10.2 
-5.68 +6. 5 
-3.30 +a. 3 

0 0 
-7.02 $3. 5 

-17. 24 +11.0 
-26. 01 $18. 6 
-31. 69 +24. 1 
-33. 55 +26.2 
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TABLE 5.-M. for Wall Slab at Supports 

T T 
- 

-- 

- 

Moment we&icients 
M0ment.Y 
(foot-kips) -i- -7 Total 

moment 
(foot-kips) 

-- 

f5. 0 
+9. 1 

+17.1 
+25. 7 
+24.0 

0 
+O. 8 
+l. 8 
+3. 2 
+4. 0 
-k4. 2 

- 

_- 

_- 

- 

-985.5 

PW 

- 0.0000 
+o. 0000 

+ 0.0000 

+o. 0009 
+O. 0032 

0 
+o. 0002 
+o. 0005 
+o. 0007 
+o. 0009 
+o. 0010 

157.7 
-- 

Pa 

+o. 0133 
+o. 0131 
$0.0134 
+o. 0133 
+o. 0103 

0 
+o. 0003 
+o. 0009 
+o. 0013 
+O. 0016 
+o 0018 

1905.4 

PO 

-- 

+0.0012 
+o. 0028 
+ 0.0054 
+o. 0079 
+ 0.0079 

0 
+o. 0003 
+ 0.0007 
+o. 0011 
+o. 0014 
+o. 0015 

1399.9 

P8 

+ 0.0004 
+o. 0012 
+o. 0034 
+ 0.0068 
+ 0.0075 

0 
+o. 0003 
+O. 0006 
+o. 0011 
+o. 0014 
+o 0015 

-- 
* 
s 

0 
0 
0 
0 
0 
0 
0. 2 
0. 4 
0. 6 
0. 8 
1. 0 

- 

-- 

- 

-_ 

_- 

- 

-. 

-- 

- 

-_ 

-- 

- 

- 

_- 

- 

- 

-- 

- 

-- 
M. 

+2.29 
+5.34 

+ 10. 29 
+ 15.05 
+ 15.05 

+“o. 57 
+1.33 
+2. 10 
+2. 67 
+2. 86 

- 

-_ 

- 

Y 
b 

1. 0 
0. 8 
0. 6 
0. 4 
0. 2 
0 
0 
0 
0 
0 
0 

M” 

+o. 00 
-0.00 
-0.00 
-0. 89 
-3. 15 

0 
-0. 20 
-0.49 
-0.69 
-0. 89 
-0.99 

M. 

$2. 10 
s2.07 
f2.11 
+2. 10 
$1. 62 

0 
+o. 05 
i-0. 14 
4-o. 21 
-l-O. 25 
+O. 28 

M. 

$0.56 
+l. 67 
$4.74 
f9.47 

+ 10. 45 
0 

+O. 42 
+O. 84 
+1.53 
-I- 1. 95 
+2.09 

TABLE 6.-M, for Wall Slab at Supports 

T Moment coefficients 
Moments 
(foot-kips) 

Values of 
pbz-1 Total 

moment 
(foot-kips) 

- 

-- 

-- 

-985.5 157.7 

- 

_- 

1905.4 1392.9 

?! 
b 

PW PS PW 

-- 

-- 
PO 

_- -- -- 

1. 0 0 0 0 0 
0. 8 -0.0000 +O. 0026 +o. 0005 +o. 0002 
0. 6 $0.0000 +O. 0027 +o. 0011 +o. 0007 
0. 4 +o. 0002 $0.0026 +O. 0016 +o. 0014 
0. 2 +O. 0006 +o. 0020 +O. 0016 +o. 0015 
0 0 0 0 0 
0 +o. 0011 4-O. 0015 + 0.0014 + 0.0014 
0 +O. 0025 +o. 0041 +O. 0036 +O. 0036 
0 + 0.0036 -i-o. 0066 +O. 0056 +o. 0055 
0 + 0.0043 +o. 0082 + 0.0069 + 0.0068 
0 +O. 0046 $0.0088 +o. 0074 +O. 0072 

- - 

- 

_- 

- 

-- 

-- 

- 

- 

_- 

- 

- 

_- 

- 

- 

_- 

- 

x 
a 

0 
0 
0 
0 
0 
0 
0. 2 
0. 4 
0. 6 
0. 8 
1. 0 

M” 

+:. 00 

-0.00 
-0. 20 
-0.59 

0 
-1.08 
-2. 46 
-3.55 
-4.24 
-4.53 

MQ 

0 
+o. 41 
+o. 43 
+o. 41 
+O. 32 

0 
+O. 24 
+O. 65 
fl. 04 
+1.29 
+1.39 

M. 

0 
+o. 95 
+2.10 
+3.05 
+3.05 

0 
+2.67 
+6. 86 

+ 10. 67 
+13.15 
+ 14. 10 

M, 

-- 

0 0 
+O. 28 +l. 6 
+O. 98 +3. 5 
+1.95 +5. 2 
+2.09 +4. 9 

0 0 
+1.95 +3. 8 
+5.01 +10.1 
f7.66 +15. 8 
+9.47 +19.7 

+ 10.03 +21.0 

- 



Appendix II 

The Finite Difference Method 

Introduction 

The bending of thin elastic plates or slabs sub- 
jected to loads normal to their surfaces has been 
studied by many investigators.’ through e A large 
number of specific problems have been solved by 
exact or approximate means, and these results are 
available. (See, for instance,3.) Exact and cer- 
tain approximate methods are frequently difficult 
to apply except to structures where some sym- 
metry exists and where a simple loading is used. 
The finite difference method, however, is readily 
adaptable to rectangular plates having any of the 
usual edge conditions and subjected to any loading. 

In Denmark, as early as 1918, N. J. Nielsen 
applied the finite difference method to the solution 
of plate problems. In his book 4 he has analyzed 
t,he problem in considerable detail and has given 
numerical solutions for a number of cases. 
H. Marcus published an excellent book 5 in 
Germany in 1924 on this subject in which he in- 
cluded numerous examples. In the United States, 
Wise, Holl, and Barton u.7 a have contributed to 
the literature of finite difference solutions for 

rectangular plates, and Jensen e has extended the 
method to provide a useful tool in the analysis of 
skew slabs. 

General Mathematical Relations 

The partial differential equation, frequently 
called Lagrange’s equation, which relates the 
rectangular coordinates, the load, the deflections, 
and the physical and elastic constants of a laterally 
loaded plate, is well known. Its application to 
the solution of problems of bending of plates or 
slabs is justified if the following conditions are met: 
(a) the plate or slab is composed of material which 
may be assumed to be homogeneous, isotropic, and 
elastic; (b) the plate is of /a uniform thickness 
which is small as compared with its lateral dimen- 
sions; (c) the deflections of the loaded plate are 
small as compared with its thickness. The addi- 
tional differential expressions relating the deflec- 
tions to the boundary conditions, moments, and 
shears are perhaps equally well known. (See, for 
instance,‘.) They will therefore only be stated 
here, using the notation and sign convention shown 
in Figure 38. 
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(0) INTERIOR POINT 

P 
Q, b 

h 
r 
Y 

Z,N,E,...NE:ki 

n,e,s ,... SW,“W 

“3 t 
Ml, MY 

by * Myx 
VI, VY 

‘?I, Ry 

P 
R 
E 
I 

P 
D 

v’ 

(bl SUB-DIVIDED GRID 

GRID POINT DESIGNATION SYSTEM 

0 
I : x 

(C) POSITIVE SIGN CONVENTION 

Intensity of pressure, normal to the plane of the plate. 
Lateral dimensions of the plate. 
Loterol dimension in the y direction of the grid elements of the plate. 
Ratio of lateral dimensions of the grid elements. 
Deflection of the middle surface of the plate, normal to the XOY plane. 
Rectangular coordinates in the plone of the plate. 
Designotion of active grid points. Also used to represent the value 

of the deflection of the plate ot the point so lettered. 
Designation of additional points on sub-divided grid. 
Subscripts used to indicate directions normal ond tangential to on edge. 
Bending moment per unit length acting on planes perpendicular to the x and y axes respectively. 
Twisting moment Ser unit length in planes perpendicular to the x ond y axes respectively. 
Shearing force per unit length acting normal to the plane of the plate, in planes normal to 

the x and y axes respectively. 
Shearing reactions per unit length acting normal to the plane of the plate, in planes normal to 

the x ond y axes respectively. 
Concentrated load acting at o grid point: positive in the some direction OS D. 
Concentrated reaction acting at 0 supported grid point; positive direction opposite to thot of p 
Young’s modulus for the material of the plate. 
Moment of inertia per unit length of o section of the plate. 
Poisson’s ratio for the material of the plate. 
Flexural rigidity per unit length of the plate; 0 = EI/(I-$1. 

Difference quotient operator: V’w = +- + 2 & + $. 

NOTATION 

FIGURE 38.-Grid point designation system and notation. 
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Partial differential equation: 

Fixed edge conditions : 

w=o, 

bW 
T&=0. 

Hinged edge conditions : 

w=o, 

$+p s?&J 

Free edge conditions : 

Free corner conditions : 

g=O (both directions) J 

g+h4 s =0 (both directions), 

d2W 
-- 
bndt-” 

Bending moments : 

M =D Y b2W~~d2~ 
by2 3x2 * 1 

Twisting moments : 

(1) 

(2.01) 

(2.02) 

(3.01) 

(3.02) 

(4.01) 

(4.02) 

(5.01) 

(5.02) 

(5.03) 

(6.01) 

(6.02) 

(7) 

Shears : 
V = 

x - 
D (8.01) 

V E-D Y b3”+ b3W 
bY3 bx2by . 1 (8.02) 

In the above expressions the partial derivatives 

with respect to n indicate rates of change in a 
direction normal to the edge, and those with 
respect to t indicate rates of change tangential to 
the edge. 

A solution to any specific problem consists of 
determining a deflection surface which satisfies the 
basic equation (l), and the appropriate sets of 
boundary conditions (2.01) through (5.03). The 
moments and shears required for design purposes 
may then be computed from (6.01) through 
(8.02). 

In general, it is difficult to obtain an analytical 
expression for a deflection surface which satisfies 
all of these conditions. If, however, an approxi- 
mate solution is acceptable, it is always possible 
in analyzing a rectangular plate to determine a 
set of deflections for a finite number of discrete 
points such that approximate relations correspond- 
ing to (1) through (5.03) are satisfied. From 
these deflections it is possible to compute moments, 
reactions, and shears at the selected points, using 
relations similar to (6.01) through (8.02). 

The approximate relations referred to above 
are obtained by replacing the partial derivatives 
by corresponding finite difference quotients. Such 
relations are simplest if the discrete points deter- 
mined by values of the independent variables are 
equally spaced with respect to both variables. 
However, in this application it will be advan- 
tageous for the relations to be developed on the 
more general basis of having the equal spacing in 
one coordinate direction bear a given ratio to the 
spacing in the perpendicular direction. 

Figure 38(a) represents a portion of the interior 
of a plate subdivided by grid lines into rectangular 
grid elements. The grid lines are spaced h units 
apart in the y direction and rh units apart in the 
x direction. The int,ersections of the grid lines 
will be referred to as grid points. Certain of 
these, lettered for identification, will be spoken of 
as active points, and the central point of the 
active group will be called the focal point. For 
simplicity in writing the equations, the identifying 
letters for each active point %ill also be used to 
represent the value of the deflection, w, of the 
middle surface of the plate at that point. The 
double letters refer in every case to the deflection 
at the individual point so lettered; they do not 
indicate products of deflections at points desig- 
nated by only one letter. 
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Based on the usual methods of finite differ- -4(l+r’)(E+W)--4r2(1+r2)(N+S) 
ences,” the difference quotient relations required 
in this development can be written directly and 

+2(3+4r2+31d)Z]. (10) 

are given below. All of the difference quotients 
are given with reference to the focal point, lettered 

This may be considered as an operator, and the 

Z. 
portion within the brackets can be conveniently 

Aw 1 
portrayed as an array of coefficients. This expres- 

bx=2rh (E--W), (9.01) sion, multiplied by h4, is shown in array form at 
(a) of Figure 39. Each element of the array 

A2w 1 represents the coefficient of the deflection of one 
z=13h2 W--274+W), (9.02) of the active grid points in a group similar to that 

shown at (a) of Figure 38. The location of the 
A3w 1 

-- (EE--2E+2W-WW), (9.03) 
coefficients in the array is congruent to the physical 

s---2?h3 locations of the points and the heavily outlined 

A4w 1 
coefficient applies at the focal point-the point 

-== (EE-4E+6Z--4W+WW), (9.04) for which the relation is to be determined. 
Ax4 Since the solution deals with discrete points, 

g=$ (N-S), 
the distributed load intensity p in the right-hand 

(9.05) member of (1) is replaced by an average intensity 
P/rh” at each of the interior grid points. Here P 

$=$ (N--2Z+S), (9.06) 
represents a concentrated load whose magnitude 
at any grid point is a function of the distribution 
of p on the four adjoining grid elements. If each 

A3w 1 
e=2h3 (NN-2N+S-SS), (9.07) 

of these elements is considered as an infinitely 
rigid plate supported at its four corners, then the 

‘$=; (NN-4N+6Z-4S+SS), (9.08) 

A%V 
-=-1 (NE-NW+SIW-SE), (9.09) AxAy 4rh2 

A3w 1 
L\X2ay=2r2h3 

- (NE-2N+NW-&+2S-SW), 

(9.10) 
A3w 

-=k3 (NE-2E+SE-NW-b-2W-SW), 

(9.11) 
A% 

7=&4 (NE-2E+SE-2N 
Ax Ay’ 

+4Z---2S+NW--2W+SW). (9.12) 

force Pz, at the focal point, is equal in magnitude 
and opposite in direction to the sum of the reac- 
tions at all corners common to Z. This can be 
expressed mathematically as : 

p,=p,,,+p,s,+p,,,+p~~~ (11) 

in which PZNE represents the contribution from 
the grid element Z-N-NE-E and similarly for the 
other right-hand members. Thus it is seen that 
the concentrated loads Pz are the static equivalent 
of p. 

It can be shown, if p varies linearly-a usual 
condition for structures-and if this variation is 
constant over the four grid elements adjoining 

The approximate counterparts of the basic 
any focal point Z, that the magnitude of the 

relations (1) through (8.02) may now be written. 
statically equivalent average load is: 

For instance if V4w is used to represent the differ- 
ence quotient equivalent to the left-hand member 
of equation (l), and the partial derivatives are 
replaced by their corresponding difference quo- 
tients, (9.04)) (9.08), and (9.12)) there results: 

v’w=& [EE+WW+r4(NN+SS) 

+2r2(NE+SE+SW+NW) 

Pz/rh2=(1/6)(p~+pE+Ps+p~S2P~), (12) 

where pN represents the intensity of p at point N, 
etc. 

The approximate counterpart of (1) may now 
be written: 

PZ 
v4y=m2* (13) 
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Multiplying both sides of (13) by h4 and replacing In like manner for elements with centers at w, 
V% by the deflections as given by (10) leads to : n, and s: 

$ [EE+WW+r4(NN+SS) 

+2r2(NE+SE+SW+NW) 

-40 +3(E+W)--4r2(1 +r%N+S) 

+2(3+4ra+3r4)Zl=~z g* (14) 

This is the general load-deflection relation for an 
interior point. It is written at (a) of Figure 39 in 
the convenient array form previously described. 
This general form of the equations has been used 
for the special cases which include the boundary 
conditions and, in fact, for all of the relations 
connecting the deflections with load, moments, 
reactions, and shears. These load-deflection equa- 
tions establish a linear relation between the load 
at the focal point and the unknown deflections of 
the plate at that and the other active grid points. 
It is these linear equations which are to be solved 
simultaneously to determine the approximate 
deflections of the plate at the grid points. 

Equation (14) may be derived directly by a 
second method which considers equilibrium of 
certain elements of the plate. Referring to the 
subdivided grid of Figure 38(b), consider the 
rectangular element ne-se-sw-nw with center at 
Z. Equilibrium of forces normal to the plate 
requires that 

(V.,-V.,)h+(V,,-V,,)rh+Pz=O. (15) 

For the similar element with center at e, equilib- 
rium of moments about the center line ne-se re- 
quires that 

(Mxz -M&+ (M,,B-M,.,Jrh 

+w.,+vx,> r;=o. 

However, if the elements are sufficiently small, 

f (v.,+v.,) 

may be replaced with VXe so that 

ME---M.&+ OLne -M,.,,)rh+V.~rh2=0. 

(16.01) 

W.,----M,)h+ Wrxnna -M,.,,)rh+V+rh2=0, 

(16.02) 

Of,, ---M&h+ (MxYne --Mxy,,)h+V,,,rh2=0, 

(16.03) 

(M,,--M,s)rh+(M,,,e-M,,,)h+V,,rh2=0. 

(16.04) 

If equations (15) and (16.01) through (16.04) are 
combined to eliminate the shears, noting at the 
same time that MIY=MYX, there results 

; CM,, --2M,,+M,,)+2(M,,,e--M,,,,+M,,, 

--MxYBJ +r(M,,--2M,,+M,,) =Pe. (17) 

An approximation to each moment in terms of 
deflections is obtained if the partial differentials 
of the definitions (6.01); (6.02), and (7) are re- 
placed by their proper difference quotients corre- 
sponding to (9.02), (9.06), and (9.09). For in- 
stance, 

M.,=-& [E-2Z+W+Lcr*(N-2Z+S)] (18) 

and 

M ‘une W-P) =--- [NE-N+Z--El. 
rh2 (19) 

Substituting these and corresponding relations for 
the other moments into (l7), and multiplying 
both sides by h2/rD gives 

f (WW-4W+GZ--4E+EE)+$ (NW-2N 

+NE-2W+4Z-2E+SW-2S+SE) 

+(NN--4N+6Z--4S+SS)=s 

which, with some rearrangement, is the same as (14). 
This second method is easily adapted to de- 

riving expressions involving nonuniform spacings, 
moment-free boundaries, etc. It was applied to 
obtain all of the load-deflection arrays shown in 
Figures 39 through 59, which were required in the 
solution of the problems covered by this mono- 
graph. 
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Where boundary conditions involve a reaction, 
the load P may be replaced by the net load, 
(P-R), which is the difference between load and 
reaction. Note that R represents a concentrated 
force whose positive direction is opposite to that 
of p, R. and R,, on the other hand, represent 
intensities of shearing reactions whose positive 
directions conform to V, and V,. 

Relations connecting the deflections with mo- 
ments and with shears are given in Figures 60 
through 64. It should be noted that shears com- 
puted by finite difference methods are inherently 
less accurate than moments. This is because the 
shears are functions of odd numbered difference 
quotients which are determined by a grid spacing 
double the value found in the even numbered 
quotients which define the moments. 

ApplicaEion to Plate Fixed Along Three &?ges and 
Free Along llie Fourth 

As an example of the use of this general method, 
its application to the problem of a plate fixed along 
three edges and free along the fourth is given below. 
The a/b ratio of l/4 has been used to illustrate use 
of the 20 supplementary equations. Loads I, II, 
and IV only are included. 

The plate is divided into grid elements and the 
grid points numbered systematically for identifica- 
tion. Layout of Plate, Figure 66, shows the 
method used in this case. Because of symmetry 
of the plate and loading about the line x=a, points 
which are symmetrical about this line will have 
equal deflections and are, therefore, numbered 
alike. This reduces considerably the number of 
unknown deflections to be determined. 

With r=l/4 and p=O.2, the left-hand side of 
each of the loaddeflection relations yields an array 
of numerical coefficients corresponding to the type 
of point it represents. These values have been 
computed for typical points and they are shown 
in Figure 65. They are used in writing the left- 
hand members of the simultaneous equations. 
Solution of these equations determines the de- 
flections. 

One equation must be written for each grid 
point having an unknown deflection. The equa- 
tion corresponding to any point is formed as 
follows : 

a. Select the array of load-deflection co- 
efficients having edge conditions and 

spacings which correspond to those of 
the given point. 

b. Orient the focal point of this array at the 
given point. 

c. Multiply the unknown which represents 
the deflection of each active grid point 
by the corresponding coe5cient. 

d. Equate the sum of these products to the 
load term for the given point. 

For example, for Point 45 the array at (b) of 
Figure 65 must be used in order that the free edges 
correspond properly. Then, following the pro- 
cedure outlined above, the left-hand member of 
the equation for Point 45 is 

+256wpI,+32wg,- 1088wa~+28.&Jw,,+w,, 
-68~,,+(1669+256)w,h--59.6~~ 

+32wM- 1088w,+28.8wM. 

Noting that RZ=O along the free edge it is seen 
that in this case the general expression for the 
right-hand terms is always (P&h*) (h’/D). Since 
these load terms are to be expressed as coefficients 
of ph’/D, it remains to evaluate the Pz/rhg in 
terms of p for each point and each loading. At 
Point 45 the right-hand members for Loads I and 
IV may be obtained by direct application of (12). 
However, a discontinuity occurs in the magnitude 
of Load II within the grid elements adjoining 
Point 45. For this reason, the more general 
method expressed by (11) must be employed. 

In particular for Load II, the elements 45-35- 
36-46 and 4546-56-55 carry no load, and accord- 
ingly they make no contribution to P,. The 
elements 45-44-34-35 and 45-55-5444 each 
carry an equal portion of the uniform load. 
Under the assumptions leading to (11) it is found, 
by statics, that the contribution of each of these 
elements to P,, is ph*/144. Hence, P,,=ph*/72 
and P&h*=p/18. 

The complete set of 30 equations and the right- 
hand (load) terms are shown as two matrices in 
Figure 66. Simultaneous solution of the equa- 
tions establishes a set of deflections for each of the 
30 grid points, corresponding to each load. These 
results are tabulated in the upper portion of 
Figure 67. 

The 20 supplementary equations used to deter- 
mine the deflections of the row of points at y=ih 

are set up in a similar manner. Equations are 
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written for each point of the 3-, 2-, l-, and 7-rows 
(see Figure 68). However, in writing equations 
for the 3- and 2-rows use is made of the previously 
computed deflections for the 4- and 5-rows. In 
addition, the solution of the 20 equations gives 
new and improved values of deflections for the 
3-, 2-, and l-rows. For Point 42, for example, the 
array (f) of Figure 65 is used to conform with the 
spacing of the grid points involved. The equation 
for Load I is 

Substituting numerical values for PsO and the 
various deflections, this becomes 

R3,,=0.03125ph2+ e 
(h2) (g) 

[--(32)(0.004944)-(16)(0.021325) 

+(128)(0.007860)-(32)(0.009833)] 

=(0.03125+0.192016)ph2=0.223266ph2. 

-28w21+21Owzz+ low,,+ 176~31-936~~~ 

5057 -SW,,+? ~~,-364w~~+~ w42 

This represents a concentrated force acting at 
Point 30. Assuming that it is uniformly distrib- 
uted over a distance rh, it can be expressed ‘as 
an average shearing reaction per unit length 

+ 176w51- 
3 ph4 

936w&w~=4 D-~44. R,,,=R3&h=0.893064ph, 

Substituting for Point 44, its deflection as deter- 
mined from the 30 equations gives, for the 
right-hand member 

or in terms of b 

R,,,=O.l78613pb, 

(0.75-0.100572) ‘;=0.649428 ‘;. 

The complete set of 20 equations for Loads I, II, 
and IV is given in Figure 68. Solution of these 
gives the deflections shown on the lower portion 
of Figure 67. Where improved values of the 
deflection were obtained, the former ones have 
been discarded as indicated in the figure. Com- 
parison of old and new values shows that they 
approach closely for the points where y/b=O.4. 

which is in the units used in Figures 1 through 33. 
Similarly, for example, the bending moment 

M, at Point 23 is computed using array (g) of 
Figure 69. Thus 

Again inserting numerical values 

Having determined the deflections, reactions 
and moments may be computed by operating 
upon the deflections with the appropriate relations, 
typical samples of which are given in Figure 69. 
These numerical arrays were obtained similarly to 
those for the load-deflection relations, by inserting 
numerical values for r and p in the proper general 
expressions of the referenced figures. 

Mx23=(;) @) [(16)(0.015283) 

t-(0.2)(0.029914)-(32.4)(0.043935) 

+(0.2)(0.046526)+(16)(0.073156)] 

=0.006818ph2=0.000273pb2. 

To illustrate the method of computation of 
reactions and moments, an example of each 
(Load I, a/b=l/4) is given below. At Point 30, 
for instance, using array (f) of Figure 69, the 
reaction is : 

Upon completion of computation of the reac- 
tions, a partial check of the solution may be 
obtained from equilibrium considerations. For 
Load I, a/b=1/4, the total load on one-half 
of the plate is p(5h)(5h/4)=6.25 ph2. The 
summation of the R/ph2 column of Figure 70 
should agree with this, and it is seen to be in 
error by something less than 0.015 percent. 
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+ r4 

+I 

+ 2r* -4r*- 4r4 + 2r* 

-4-4r* +6+8r*+ 6r’ -4 - 4re +I = p . h’ 
rh2O 

+ 2r* - 4r*- 4r4 + 2r* 

+ r4 

(0) INTERIOR POINT 

I + r4 I 

(b) POINT ADJACENT TO A FIXED X-EDGE 

= P h4 
rhe T’ 

/ + r4 

/ / + 
/ 

-4rt- 4r4 + 2 r* 

= 

/ + - 4+ 4r4 +2rg 
/ 
/ 
/ + r4 

(C) POINT ADJACENT TO A FIXED Y-EDGE 

+ r4 

(d) POINT ADJACENT TO A FIXED CORNER 

NOTES 
Except where otherwise indicated horizontol spacing of grid points 

is rh units ond vertical spacing h units. 
An osterisk (*I indicates thot no coefficient is required because the 

fixed-edge deflection ot thot point is zero. 
An edge porollel to the X-Axis is designoted OS on X-Edge. 
An edge porollel to the Y-Axis is designated OS o Y-Edge. 
A fixed edge is indicated thus: T7T/777TTTT 
A moment-free edge is indicated thus: 
Any factor preceding on array of coefficients is o multiplier 

of each element of the orroy. 

FIGURE 39.-Load-dejlection relations, Sheet I. 
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(0) POINT ADJACENT TO A MOMENT-FREE CORNER 

(b) POINT ADJACENT TO A MOMENT-FREE X-EDGE 

= P h’ -- 
rh2 D 

P h’ 
rhe -6’ 

P h’ 
-z-b’ 

= 

(c) POINT ADJACENT TO A MOMENT-FREE Y-EDGE 

++ = 

(cl) POINT ADJACENT TO A MOMENT-FREE X-EDGE AND A FIXED Y-EDGE 

+r4 

+ 20 -40 - 4r4 +(2-p)r* 

-2-212-p) 0 = 
P h’ -. 

rkQ 

////////////////////////////////////////////////~ 

(a) POINT ADJACENT TO A MOMENT-FREE Y-EDQE AN0 A FIXED X-EDQL 

NOT&--For general notes see Figure 39. 

FIGURE 40.-Load-deflection relations, Sheet ZZ. 
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I + r4 I 

(0) CONANT-FREE X-EDGE 

+ I + 4(1 (P-R) h’ = 
- 0’ r h* 

(b) POINT ON A MOMENT-FREE Y-EDGE 

MOMENT-FREE Y-EDGE (C) POINT ON A MOMENT-FREE X-EDGE ADJACENT TO A 

t(2 - fi)rp -2(i-u)r~2(1-u~)r4 

++(i-gz)r4 

(d) POINT ON A MOMENT-FREE Y-EDGE ADJACENT TO A 

= (P-R) h4 

rh* -D--’ 

MOMENT-FREE X-EDGE 

(13) POINT ON A MOMENT-FREE X-EDGE ADJACENT TO A FIXED Y-EDGE 

++(I-p*)r4 

(f) POINT ON A MOMENT-FREE Y-EDGE ADJACENT TO A FIXED X-EDGE 

NOT&-For general notes see Figure 39. 

FIGURE 41.-Load-dejlection relations, Sheet III. 
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(0) POINT ON A MOMENT-FREE CORNER 
(b) POINT ON A FIXED CORNER 

(d) POINT ON A FIXED Y-EDGE 

(0) POINT ON A FIXED X-EDGE 

ADJACENT TO A FIXED CORNER 

-l.,;,,,fi/,z ~ 
(0) POINT ON A FIXED X-EDGE ADJACENT 

TO A MOMENT-FREE Y-EDGE 

!!I, D 

* + +2r2 

L 
r4 k * -4-4r* +I 

9 * 

(t) POINT ON A FIXED Y-EDGE 
ADJACENT TO A FIXED CORNER 

= (P-RI 

r h2 

h’ 
T-’ 

(h) POINT ON A FIXED Y-EDGE ADJACENT 
TO A MOMENT-FREE X-EDGE 

(i 1 POINT ON A FIXED X- ht0htE~T-FREE Y-CORNER ( j) POINT ON A FIXED Y- MOMENT-FREE X-CORNER 

Nom.-For general notes see Figure 39. 

FIQURE 42.-Load-deflection relations, Sheet IV. 
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i 
P 
h 

T 
h 

I +r’ I 
+ 2 rp - 4 rz - 4 r4 + 2re 

I 
-P 

P h’ = 
37 T’ 

I 
7 

+2r* 1 -4r*- 6r4 +2r* 

+--rh-s+< ____ rh--.+ ____ rh ____ ++-rh--+l 

(0) INTERIOR POINT 

I + r4 I 

I +2 rt -4P - 6r4 + (2 -pL)r* 

P h’ 
= X0’ 

,+ r,, -+,+.- rh --__ + ---- rh ----- ,j 

(b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE 

I ++(I -p) r* 

+ (2-p)? -2(1-p)r*-2(1-p*)r 

+ (2-P)@ -2(l -/L)+3(l-Z)r’ 

++(I -PI r’ 

b---rh---+j+ _____ rh----A 

(c) POINT ON A MOMENT-FREE Y-EDGE 

Nom-For general notes see Figure 39. 

FIGURE 43.-Load-de$ection l’elations, vertical spacing: S at h; 1 at h/B, Sheet V. 
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s 
+128 -&+Zr* 

I-& 1+$+4r’ 

+ r4 
I 

= P h' - -. 
rh' 0 

p--rh---* _____ rh ----* ---- rh ____ *---rh--q 

(a) INTERIOR POINT 

+ r4 

I +8r4 
I 

k-rh--*-- rh ---+ __-_- rh ---- +/ 

(b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE 

+t(t-pe)r4 

+ * - & +(2-tc)r* +*-2(l-p)rc 

-3(1-p*) r* 

I 
7 

1 +4(1 -P)r’ 

km-- rh---e ____ rh _____ 4 

(c) POINT ON A MOMENT-FREE Y-EDGE 

NOTE.-FOI general notes see Figure 39. 

FIGURE 44.-Load-dejlection relations, vertical spacing: d at h; d at h/d; Sheet VI. 
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% 

i 
$‘h 

f 
f ‘h 
k 

7 I I -64 +&+4+ -&. 
I 

t3rt-40r4 
I 

+&+4rr 

I 
+ 64 r4 

3 I 

5 +128 

IJ 
+105 

128 = L&+. 

7 
-64 

,+t-- r’++ --__ r,, ---+ __--- +-++-~‘,--~ 

(a) INTERIOR POINT 

-& 
7 35 +=+4r= -z - are-40r4 +&+2(2-p)r* 

+64 r4 
3 

/-+- rh--* ____ rh ____ +f+-- ____ rh _- ____ 4 

(b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE 

= PA!. 
rh2 D 

+ + (I -pe) r4 

= IP-R) h’ . 
rh2 0 

-is- + $ + 2(2-p)r* -&-4(1-p)rL-20(i-p1)P 

+ + (I-pz)r* 

p ____ rh---+-------rh _______ 4 

(c) POINT ON A MOMENT-FREE Y-EDGE 

NOTE.--For general notes see Figure 39. 

FIGURE 45.-Load-deflection relations, vertical spacing: 2 at h; 1 at h/2; 1 at h/4, Sheet VIZ. 
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7- 
h 

x 
% 
i,h 
* 
+‘h 

+ 
+‘h 
P 

+4rP -are- 32r4 +4re 

I +6r4 
I 

P h’ = --. 
rh* D 

(a) INTERIOR POINT 

I +$ r4 
I 

+4rp -Ore- 32r’ +2(2 -p)r* 

+0r4 

= I' h4 --. 
rh* D 

+-rh--4---rh ---- *-----rh-----+/ 

(b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE 

+ 2(2 -PC) r* -4wF12(1-pV 

I 

7 +t -I -4(2-pL)r’ 
++-+ 0(1 -p)r* 

+ 661,-pcljr4 

+2(2-p)r* -~-p)r*-i6(1-pe)r’ 

I +4(1 -p*)r’ 

k--- rh ----* _____ rh - ___- 4 

(P-R) h4 = --. 
rh' 0 

(c) POINT ON A MOMENT-FREE Y-EDGE 

NOTE.-For general notes see Figure 39. 

FIGURE 46.-Load-deflection relations, vertical spacing: 1 at h; 3 at h/B, Sheet VIII. 



64 

I 105 
+256 

- Lg -,2p 496 
++$+24r’+-j-r 

. - _ 105 =-,2rg +105 = +A!.. 
256 rh 0 r’ 

-Tk +&+gre -g- 16rL - 192r4 + &-+ 0r r --A 

b--rh--e --___ rh ----+ ______ rh----++--rh--4 

(a) INTERIOR POINT 

I ++r . I 
5 

+zz 

105 
+isd 

-6 

-&+4rg 
I 

25 
+i56 - 6r’- 4oP 

I 
-& +2(2-pL)r 

I 
F 

= Lx.. 
rh’ 0 

MOMENTS AND REACTIONS FOR RECTANGULAR PLATES 

+ f r’ 

+&+Br ?. -35 

I 
G-l6r*-192r4 +&t4(2-p)r 

I 

I + 64t’ I 

b--rh--e---- rh ----_ e -_____ rh------d 

(b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE 

c 
I +$(I -2) r* 

II 

5 +256 I -$ +2(2 -p)r* 
I 

+A-4(1-p)r*-20(1-p*)+ 
II 

-6s + & t 4(2-p)+ - & - 9(1 -p)r~9ql-p*) r* 

+32(1 -/4r’ 

II 
km-- rh ---* __---___ rh------A 

(c) POINT ON A MOMENT-FREE Y-EDGE 

= P-R) h’ . 
rh* D 

NOTE.--For general notes see Figure 39. 

FIGURE 47.-Load-deflection relations, vertical spacing: 1 at h; 1 at h/2; 2 at h/4, Sheet IX. 
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+ $ r4 

= P h' --. 
rh* D 

-7 +&- +8r’ -$+ -16r’ 
-320r’ 

7 
+3-i-++rP 

7 
126 -128 

A 

+ 51e r4 
3 

+-rf+-+ _____ rh ____ 4---rh---~--rh--~ 

(a) INTERIOR POINT 

++ r4 

- * +& + 69 -$$ -16r*-320r’ +& +4(2-p)r* 

+w r* 

be- rh --+ _____ rh ----+ ______ rh ____- 4 

P h' = --. 
rh* D 

(b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE 

f 

$ 
* fh x f;, f 

+ f (I -p*) r* 

5 
+e56 -& + 2(2-p)r* +A -4(1-p)r*-20(1-p*)r’ 

I =. P-R) h’ . 
r) rh' D 

-T&i +* +4(2-p)r * -&-8(1-p)rc-i60(i-$)r4 

+?(I -p*)r4 

II 
b--fh---e ______ rh _______ 4 

(c) POINT ON A MOMENT-FREE Y-EDGE 

Nom-For general notes see Figure 39. 

FIQURE 48.-Load-dejlection relations, vertical spacing: 1 each at h, h/d, h/4, and h/8, Sheet X. 



66 MOMENTS AND REACTIONS FOR RECTANGULAR PLATES 

b---r,, -+,+- --__ r,, ----- +-s-v rh ----- +-- r,,+.., 

(0) INTERIOR POINT 

I +gr* I 
+4rz -8r’- 32r’ +2(2-p)r* 

+4rc - 8rg- 32r4 +2(2-p) r* 

b--rh---+/.+ __-_ rh _____ T ______ rh _____ ++ 

(b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE 

I +2(2-p) rc I -4(1-p)r1-16(1-p)r411 

.f+----rh ____ *- __--- rh ----- 4 

(Cl POINT ON A MOMENT-FREE Y-EDGE 

NOTE.-For general notes see Figure 39. 

FIGURE 49.-Load-dejfection relations, vertical spacing: 4 at h/8, Sheet XI. 



$h 
4 
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+ 64 r. 
3 

+ 9r* -l6r*- 192r4 

+6rP - 16r* - 256r’ 

+64r4 

+6r2 
I 

J 

b-rh--+----rh ____ +----rh ----+--rh--d 

(0) INTERIOR POINT 

I l +y r’ 
I 

p 

I +64r* 
I 

P h’ = --. 
rh* D 

~-rh-~--- rh---++g-----rh ____ 4 

(b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE 

I +4(2 -p)” 

I- ++ -+ -8(2-p)P 

+4(2-p)r’ 

+y (I-p*)+ 
II 

-6(l-p)r’- 96(1-p’) r4 
(I 

-e(l-p)re-126(1-pc)r4 

+ 32(l -PL)r4 

67 

+-c-m r,, -+ _______ r,, - _____ +, 
II 

(c) POINT ON A MOMENT-FREE Y-EDGE 

NOTE.-FOT general notes see Figure 39. 

FIGURE 50.-Load-deflection relations, vertical spacing: 1 at h/B; 3 at h/4, Sheet XII. 
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I 
r) 

+IoI 
512 -j+$-24r’ +z+46rt+yr4 -j$-24rt +s = f’ h’ . 

rh’ D 

- & +& + 16r’ -.&-32~1536r4 +& + 16r’ - & 

b--rh--+-----rh ____ h _____ rh _____ *---rh--~ 

(a) INTERIOR POINT 

+ 84 r4 
3 

-!- 
r4 

-& +&+16r* - & -32r’- 1536r4 + & + 6(2-p) r* 

+512r4 

k--rh-e -____ rh ____ +j+----- rh _____ 4 

(b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE 

I ++(I -p*)r* II 

p At. 
-3-D 

5 
+sle -&+4(2-p)rE t$ -6(l-~)+l6OfJ+)+ 

= (P-R) h’ --. 
rh’ D 

-I 
256 +&+6(2-p)r* -& - 16(1-/~)+766(1 +,r’ 

+256(1 -PC)+ 

II 
b---rh ____ + _______ rh _______ 4 

(cl POINT ON A MOMENT-FREE Y-EDGE 

NOTE.--For general notes see Figure 39. 

FIQIJRE 51.-Load-deflection relations, vertical spacing: 1 at h/d; 1 at h/4; 8 at h/8, Sheet XIII. 
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$ 
x 

f'h 

x 
f'h 

f 
flh 

9 

-I 
f:h 
* 
t:” 
* 
flh 
* 

+@h 

k 

- 16r*- 256r4 

= 

+6r* -16rz- 266r. + 6re 

+64r4 

bt---rh.--+ _____ rh ____ e _____ rh ____ +-rh--d 

(a) INTERIOR POINT 

I I 7 +T c 

P h' 
-;i;p T-' 

+64r4 

+Ort -l6r’- 256r’ 

P h' 
= Ti;fO' 

+6re --16+ -256r4 +4(2-p) rt 

+64r4 

f+--rh---* ____ rh _____ * ______ rh _____ -f 

(b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE 

,+--r,,/+ _____- r,, ----- +, 

(c) POINT ON A MOMENT-FREE Y-EDGE 

NOTE.-For general notes see Figure 39. 

FIGURE 52.-Load-deflection relations, vertical spacing: ,$ at h/4, Sheet XIV. 
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I +16r’ -32r’ - 1536r’ ( +,6,.F1 

b--rh--+ -_____ rh ---- *-----rh ____ 4--,-h--d 

(a) INTERIOR POINT 

f 
fh 

+ l6r* - 32r’ - 1536r4 +6(2 -p)rc 

+I++ -+q++& = m$+. 

+ l6r* -32r* - 2046r’ +6(2-p)r* 

+ 512r4 

(b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE 

I +?(I -pE)r4 
II 

+ 6(2 -p)r* -160 +)r’- 766(1-/L*) r’ 

k--rh --+ ______ rh _____ -4 

(c) POINT ON A MOMENT-FREE Y-EDGE 

NOTE.-For general notes see Figure 39. 

FIGURE 53.-Load-deflection relations, vertical spacing: 1 at h/4; S at h/8, Sheet XV. 
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+512r4 

+16r’ - 32re- 2046P +l6r* 

+ 512 r’ 

kc-- rh ---*-----rh _____ * -____ rh _____ G---rh --+ 

(a) INTERIOR POINT 

P h’ 
rhL 0’ 

I 

+512 r4 

+ 16r’ - 32r*- 2046P 

+16r’ - 32 r’- 2046 r4 +6(2 -pL)r* 

+s12r4 

k--rh---* ____ rh _____ pj+ ______ rh ------~ 

(b) POINT ADJACENT TO A MOMENT-FREE Y-EDGE 

+256(1- PL) r’ 

+6(2 -pLr* --16(1 -~)r’-lO24(1-~~ 

+6(2-p)+ -16(1-~)+1024(1-cp) 

+c---rh--+ ____ -rh------4 

(c) POINT ON A MOMENT-FREE Y-EDGE 

NOTE.-For general notes see Figure 39. 

FIGURE 54.-Load-dejlection relations, vertical spacing: 4 at h/8, Sheet XVI. 
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b-irh +--+rh---h--s rh---h-irh-F( 

I + 4r’ I 

birh+--+rh--+--+rh--+-$rh-4 

= (P-R) h' --. 
rh* D 

-16r*- tzr' 

I +4r4 I 

bkrh-*--irh--h--$rh--+-irh-4 

+ + r' 

+4rz -6rz- 2r4 +4r' 

NOTE.-FOT general notes see Figure 39. 

= (P-ax, 
rh' D 

FIGURE 55.-Load-deflection relations, horizontal spacing: .$ at rhl%, Sheet XVII. 
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Th 

f 

i” 

$.,, 
r2 

= (P-R) ‘. 
rh’ 0 

+ 6P - 16P*- 16f’ +er’ 

+4r4 

I 
7 

+ 6r’ - 16f’- 16f4 + 6P 

+4r’ 

+-+rh -+--$ rh---+--+rh ---+- rh -4 

I + 4 r4 I 

b-$rhh--frh--h--irh--*-rh-c( 

I +$r 
l I 

+ 4r’ - 8r’ - 3r’ +4r’ 

+ $r* 

1 + 4r* 1 - 6~’ - 2r4 1 +4r* 1 

,+,,++$ rh ---wf+--3rh --+- rh -4 

= P 2. 
rhTD 

P h’ P 7 -= 
rh D 

NOTE.--For general notes see Figure 39. 

FIGURE 50.-Load-dejlection relations, horizontal spacing: 3 at rh/d; 1 at th, Sheet XVIII. 
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+6f' 

+ 8rP - 12r* - 24r' + 4r* 

+6r4 
1 

b-irh-rt<---$rh--+ ____ rh---+--rh-+ 

+2r' 

+ 6fP - i2r2- 24r4 + 4rg 

+6r' 

b-$rh-+---irh --+f+----rh---*--rh--,../ 

+ Jr’ 
4 

L +6 
r' 

+6rp - 12r* - 16r. +4r* 

+6r' 

b-$rh h---+rh---Zt, ____ rh---+--rh--+ 

+Jr’ 4 

+4rz - 6r* - 3r' 

+2r* 

b-irh-+---krh --+----,-h ---*--rh-+ 

I + Jr’ 
4 I 

+4r* -6r* - Jr4 +2r2 

+zr* 
4 

Nom.-For general notes see Figure 39. 

= (P-A) h' 
7 -- 

rh D 

P h' 
= --. 

rh' 0 

P h4 
= --. 

rh' D 

P h4 = 
2 -- 

rh 0 

P h' 
= - -. 

rh' D 

FIGURE 57.-Load-deflection relations, horizontal spacing: 2 at rh/d; 2 at rh, Sheet XIX. 
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Th 

f h 

;f” 
i;” 
$,, r2 

I 
+6r' 

I 

b-krh* _-__ ,-h---e--- rh ---e--,-h-+ 

I3 1 + =r' 

k-irh-4 ___- rh ---e ---_ ,-h ---*-,-h -4 

= (P-RI h4 --. 
rh' D 

P = h' 
I--. 

rh 0 

khrh 4--rh --e---rh---*-rhd 

+r' 

I P ha 
7 2-* 

rh D 

+2 r* -4r* - 6r' + 2rP 

+ 8r' 
3 

bhrh b--rh--+=-/+---rh--+-j+-rh -4 

I +r4 I 

+2r* - 4r" - 4r4 + 2rp 

+r* 

birh +---rh --e---rh--W/N- rh 4 

P h' = --. 
rh* D 

Nom.-For general notes see Figure 39. 

FIGURE 58.-Load-desection relations, horizontal spacing: 1 at rh/8; 3 at rh, Sheet XX. 
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+6r4 

+4rt - 6r* - 32r' + 4rt 

(P-R) h' 
= --. 

rh' D 

+4r' - 6P - 32r' + 4r' 

+ 6r' 

j-e-rh-+--rh--+---rh---+--rh-4 

+ Lr' 3 

P = h' --. 
rh* D 

+4r' -6r'- 32r' +4r' 

+ 6r* 

+r4 

I 

7 +P 

+4r' - er'- 24r4 +4r* 

+6r' 

P h4 = 
77-D' 

b-rhh---rh --+---rh--4--rh-c( 

+r4 

P h* = --. 

rh' D 

+2r1 - 4r'- 6r' +2r' 

++rb 

b-r h -4--- rh --4--- rh ---h- rh --f 

+ r* 

P h' = --. 
rh* D 

+2re -4r' - 4r' +2r* 

+r* 

+-rh-+--- rh ---+--- rh--+- rh-4 

NOTE.-For general notes see Figure 3% 

FIGURE 59.-Load deJEection relations, horizontal spa&a: .4 at rh. Sheet XXI. 
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I I 

I+-rh--+a---h-+-j 

(a) 

l+rh+t+rh+ 

(4 

INTERIOR POINT 

Mx = $31 

My = 0 
t+-rh-+-rh -4 

k4 (e) 

* 
+2rx 

-t H 
b=?pry!t * 

4 

Mx = pm, 

(h) 

EDGE AND CORNER POINTS 

I J 

I-c-rh-+k--rh-+I 

b) 

+e(l-p)r* tJI My=++ * I 

M, = 0 

(i) 

I+-rh--+--rh--4 I+-rh-+I+-rh-+I 

(i) (k) (ml 

INTERIOR AND EDGE POINTS - NONUNIFORM SPACING 

Mr = 0 MI - 0 
(4 1s) (t) 

EDGE AND CORNER POINTS - FRACTIONAL VERTICAL SPACING 

NOTES 
4 = M, = 0 at either a fixed or moment-free corner. 
M xv = MYI = 0 ot any point on o fixed edge. 

NOTE.--For general notes see hgure 39. 

FIQURE 6O.-Momentdejlection relations. 
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Mx P 
ah* 

L -  0 

,--rh-+--rh -v, 

MyP 
He 

b-+-rh +-rh-w, 

Nom.-For general notes see Figure 39. 

FIGURE 61.-Moment-dejlection relations, various point spacings. 
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INTERIOR POINT 

-(l-IL) +2 I I -u) -(I-P) vy=$& 0 t r2 0 

eF 
+I -2(l t r2) +I 

+r2 

POINT ADJACENT TO A MOMENT-FREE EOQE 

(e) 

POINT ON A MOMENT-FREE EDGE 

(4 

D I 
v, =Tm 

(f) 

-r2(l-fi) 

+2re(i-Cc) E 0 

-2+(1-u) 

+r2( I-u) 

(9) (h) 

POINT ON A MOMENT-FREE EDGE ADJACENT TO A MOMENT-FREE CORNER 

NOTE.-FOT general notes see Figure 39. 

FIGURE 62.-Shear-deflection Telations, Sheet I. 



80 MOMENTS AND REACTIONS FOR RECTANGULAR PLATES 

v,=P ’ 
h’ 2 

(b) 

POINT ADJACENT TO A FIXED EWE 

(cl 
(4 

POINT ON A FIXED EDGE 

(4 

/ / 
/ * 
/ 
, + -2 

VY = -$-&r 

IfI 

POINT ON A FIXED EOQE ADJACENT TO A FIXED CORNER 

(e) (h) 

POINT 0N.A MOMENT-FREE EDQE ADJACENT TO A FIXED EDQE 

NOTE.--For general notes see Figure 39. 

FIGURE 63.~Shear-dejlection relations, Sheet ZZ. 
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ph vx =- 
r3 

b-rh-+-rhe 

k- r h -+- rh+ 

I 

b- rh +-rh+ 

-6(2 +r2) +4 

Note: These orroys opply Only where the load at corresponding 
points on opposite sides of the centerline is equol in 
magnitude but opposite in direction. 

Nom.-For general notes see Figure 39. 

FIGURE &I.-Shear-de$ection relations, Sheet ZZZ. 
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+ 32 -66 +32 

+256 - I066 + 1670 -1086 +256 

+32 -66 +32 

(a) INTERIOR POINT (b) POINT ADJACENT TO A FREE X-EDGE 

i [ 

+26.6 -59.6 +26.6 

+ 256 -1066 + 1669 - I066 + 256 

f 
+32 -66 +32 

f +I 

+32 -66 +122.66 -517. 12 +76X46 -517.12 +122.66 

+ 256 -1066 +50(1 
3 

+32 -70 

-;!;6 +256 ] f’[ 

tb-fh--*--fh--*--th--~--~h--~ 

(C) INTERIOR POINT 

VERTICAL SPACING: 3 AT h; I AT +h 

(d) POINT ON A FREE X-EDGE 

f 
+ 64 - 152 + 64 

t I26 - 640 +G 3 - 640 +I26 

+64 -I60 +64 

+a 

l tl 

+ IO -6 -10 -6 + IO 

t 210 -936 +y -936 +210 

-26 + 176 - 336 + 176 -26 

+64 
3 

p-v f ,,++& + ,,++-- $ ,,-+-- f h-4 

(0) INTERIOR POINT 

VERTICAL SPACING: IATh; SAT+h 

(f) INTERIOR POINT 

VERTICAL SPACING: 2 AT h; I AT fh; I AT fh 

FIGURE 65.-Load-deflection coeficients, r=M, p=O.Z. 
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I I DEFLE( 

I 
IO.1 I +.005659*I +.ol! 

1 1.0 1 +.000426 

Deflection = (Coefficient)(ph’/D) 

beep-t; 

LOAO I 

cc-p -4 

LOAD Iz 

k-p -ti 

LOAD m 

Y 

IJP -+- 

l@J 

POSITIVE SIQN CONVENTION 

Deflection = (Coefficient)(ph’/D) 

NOTE 
Starred values computed from 30 equations are discorded 

when the corresponding improved value is oljtoined 
from the 20 equations. 

FIGURE 67.-P&e $xed along three edges, deflection coefiients. a/b=%. Various loadings. 
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(0) POINT ON A FIXED Y- 
FREE X-CORNER 
[FIQURE 39 II,] 

(b) POINT ON A FIXED I-EOQE 
ADJACENT TO A MOMENT-FREE X-EWE 

[FIGURE 39 (II,] 

(C) POINT ON A FIXED Y-EDBE 
VERTICAL SP.oI*G: h ANO + h 

[FIGURE 42 iol] 

tcfh-++hc( I+ h -+-fh+ 

(d) POINT ON A FIXED Y-EWE 

“ERTlCAL SPACING: + II ANO + h 

[FIGURE 44 to)] 

(0) POINT ON A FIXED CORNER (f) POINT ON A FIXED X-EWE 
[FIGURE 49 (Ol] [FIGURE 49 IO,] 

REACTION-DEFLECTION COEFFICIENTS 
r = l/4 p = 0.2 

T 
h 

i 

l+h -++hd 

k+h+++hd CC+h-Ct(-+h+ 

(0) INTERIOR POINT (h) POINT ON A FREE EDQE (i) INTERIOR POINT 

[FIGURE se to)] [FIGURE !N! Ml] “E”TIOAL scAaIw0: h A”0 f h 
[ .=IGURE se (I,] 

BENDING MOMENT-DEFLECTION COEFFICIENTS (M,) 
r = l/4 jl = 0.2 

+fh+-+h+i 

(j) INTERIOR POINT 
[FIGURE se (b)] 

l++h -+fh tl 

(k) POINT ON A FIXED EDQE (m) INTERIOR PQINT 

[FIGURE se (PI] “ERTlCAL SFAOIW: h AGO + b 

[FIGURE se km)] 

BENDING MOMENT-DEFLECTION COEFFICIENTS (MY) 
r = I/4 p - 0.2 

NOTES 
To find the net reaction or the bendinq moment at ony focal point, 

compute the products of the coefficients of the oppropiote orroy by 
the deflection of the correspondinq points ond multiply their sum by (O/h’). 

Figure numbers in brackets refer to qenerol expressions from which 

these numeric01 orroys were computed. 

FIGURE W.-Numerical values of typical moment and reaction arrays, r=x’, p=O.B. 
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POINT 
Yfl DEFLECTIONS - w/(ph4/D) 

0 I 
I 1 I 

6 0 +.017022 1 t.049660 1 + .063466 1 t. 107935 +.I16792 

5 1 0 + .016122 t .046640 + .076499 +. 101377 + .I09650 
4 1 0 + .016030 t.046526 t .077914 +. 100572 +.I06761 

1310 1 +.015263 1 +.043935 1 t .073156 

2 0 + .010730 + .029914 + .046903 

I 0 + .004699 t.013261 + .02 1325 

7 0 + .001835 + .004944 + .007660 

0 0 0 0 0 

t.010522 I 

04 1 t.125 +I.131256 +I.256256 

03 1 +.I25 +I.131056 + I .‘256056 .-_-. 
02 t.09375 t .736474 + .a32224 +. 190464 

01 + SO46675 +.I78392 + .225267 

07 +.03125 - .000992 + .030256 

00 [ t .Ol5625 -.056720 1 - .043095 1 + .029514 

IO 1 t .03125 I -.001712 I t.029536 I + .023630 
I I 

20 + .03125 +.I10096 + .I41346 +. I I3077 

30 + .03125 +.I92016 + .223266 +.I78613 

40 + .03125 + .240512 + .271762 t.217410 

50 + .03125 t .256320 + .207570 + .230056 

I c” +6.249145 * lncludrs only of bo. 

POINT 
NO. BENDING MOMENT - MJpb* 

0 I 2 3 4 5 

6 __-_. , 
5 + .020636 + .009346 + .000622 1 -.005565 1 -.009301 1 -.010539 

+ 020917 7 +.009607 1 t .000693 1 -.005724 1 -.009592 1 -.010863 I 

1 t -000553 1 -.005621 1 - .009305 1 - .010531 1 4 + .020516 + .009253 

3 + .019562 + .006526 1 t .000273 1 - .005438 I -.006766 I - .009690 I , 
2 + .013734 t .005335 - .000330 -.003930 -.005917 1 - .006549 
0 0 + .000470 + .001266 + .002012 + .0025 I7 t .002694 

POINT 
NO. BENDING MOMENT - My/pbe 

-T 
SE?1 0 UhllJ - I I 2 3 4 5 I 

6 1 0 I 0 0 0 0 0 

I !I t 004127 I +.001901 + .00022 I - .000949 -.001639 - .001666 
4 + .004104 + .OOl625 t .00002 3 -.001264 - .002076 - .002344 

3 + .003912 t .001559 - .000364 -.001636 - .002734 - .003036 

2 + .002747 + .000703 -.001051 - .002366 - .003177 - .003449 

+ .006326 t .01006 I + .012566 + .013460 0 1 0 + .002349 

FIGURE 70.-Plate fixed along three edges, dejlections-reactions-bending moments, Load I. a/b= xi, p=O.6. 
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. 

Mission of the Bureau of Reclamation 

The Bureau of Reclamation of the U.S. Department of the interior is 
rewonsible for the development and conservation of the Nation’s 
water resources in the Western United States. 

The Bureau’s original purpose “to provide for the reclamation of arid 
and semiarid lands in the West” today covers a wide range of interre- 
lated functions. These include providing municipal and industrial water 
supplies; hydroelectric power generation; irrigation water for agricul- 
ture; water quality improvement; flood control; river navigation; river 
regulation and control; fish and wildlife enhancement; outdoor recrea- 
tion; and research on water-related design, construction, materiels, 
atmowheric management, and wind and solar power. 

Bureau programs most frequendy are the result of close cooperation 
with the U.S. Congress, other Federal agencies, States, local govern- 
ments, academic institutions, water-user organizations, and other 
concerned groups. 

A free pamphlet is available from the Bureau entitled “Publications 
for Sale.” It describes some of the technical publications currently 
available, their cost, and how to order them. The pamphlet can be 
obtained upon request from the Bureau of Reclamation, Attn D-7923A, 
PO Box 25007, Denver Federal Center, Denver CO 80225-0007. 


